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Abstract—People in crowd scenes always exhibit consistent
behaviors and form collective motions. The analysis of collective
motion has motivated a surge of interest in computer vision.
Nevertheless, the effort is hampered by the complex nature of
collective motions. Considering the fact that collective motions are
formed by individuals, this paper proposes a new framework for
both quantifying and detecting collective motion by investigating
the spatio-temporal behavior of individuals. The main contribu-
tions of this work are threefold: 1) an intention-aware model
is built to fully capture the intrinsic dynamics of individuals;
2) a structure-based collectiveness measurement is developed to
accurately quantify the collective properties of crowds; 3) a multi-
stage clustering strategy is formulated to detect both the local and
global behavior consistency in crowd scenes. Experiments on real
world data sets show that our method is able to handle crowds
with various structures and time-varying dynamics. Especially,
the proposed method shows nearly 10% improvement over the
competitors in terms of NMI, Purity and RI. Its applicability
is illustrated in the context of anomaly detection and semantic
scene segmentation.

Index Terms—Crowd analysis, Collectiveness, Manifold learn-
ing, Group detection, Clustering

I. INTRODUCTION

Collective motion, which is the primary component that
makes up a crowd, is one of the most attractive phenomena
in both nature and human society. Individuals in a collective
motion tend to share consistent property, which is funda-
mentally important for analyzing the underlying pattern of
crowd behavior. Since collective motion provides a mid-level
representation of crowds, it has drawn increasing attentions
in the field of computer vision, and involves a wide range
of applications, such as crowd tracking [1], [2], [3], crowd
counting [4], [5] and action recognition [6], [7], [8], [9].
However, due to the complex spatial distribution and time-
varying dynamics in crowd scenes, both the quantification and
detection of collective motion are still difficult tasks.

In order to compare different crowd systems quantitatively,
several works are conducted on the quantification of collective
motions. Particularly, the collectiveness descriptor proposed
by Zhou et al. [10] is the first scene-independent quantifica-
tion measurement. In specific, individual-level collectiveness
describes an individuals’ behavior consistency with others,
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Fig. 1. (a) Collective motions with manifold structures. (b) Crowd scenes
with high, mid and low collectiveness. (c) Local and Global consistency in
crowd scenes, yellow arrows indicate moving directions.

and scene-level collectiveness indicates the degree of all the
individuals acting as a team. As a fundamental descriptor,
collectiveness captures the universal characteristic of collective
motions, and it has shown its applicability in crowd video clas-
sification and crowd modelling [11]. However, the calculation
of collectiveness faces two major challenges: (1) it’s com-
plicated to compare the long-term behaviors of individuals,
whose motion dynamics change with time; (2) in crowd scenes
with manifold structures, due to the information propagation
between neighbors, individuals in the same collective motion
may exhibit various behaviors, as shown in Fig. 1 (a), which
increases the difficulty on collectiveness measurement.

Collective motion detection aims to cluster the pedestrians
according to their motion patterns. Generally speaking, it can
be formulated as the clustering of individuals with similar
motion patterns. Different clusters convey different semantic
behaviors, so collective motion detection could facilitate some
semantics-driven tasks, such as crowd activity recognition
[12], [13], [14] and scene understanding [15]. Similar to the
quantification task, collective motion detection also suffers
from the aforementioned two problems. In addition, collective
motion involves both local and global behavior consistencies,
as shown in Fig. 1 (c). Due to the different arrival time,
individuals in the same collective motion may reside far away
from each other, which makes the global consistency hard to
detect.

The goal of this study is to measure collectiveness precisely
and detect collective motions correctly. We put forward a
framework, which has the capability to handle complex real-
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Fig. 2. The pipeline of the proposed framework. First, we extract motions of individuals with robustness, and propose an intention-aware model to analyze
time-varying motion dynamics. Then a collectiveness measurement, which investigates the topological relationship between individuals, is utilized to measure
collectiveness. Finally, a multi-stage clustering strategy is developed to detect collective motions in crowd scenes.

world crowd systems. Firstly, individuals are identified and
represented by feature points. Secondly, the individuals’ trajec-
tories are modelled and compared. After that, the topological
relationship between the individuals is learned, and the collec-
tiveness is calculated. Finally, based on the learned topological
relationship, collective motion detection is performed with a
multi-stage clustering method. The pipeline of the proposed
framework is shown in Fig.2.

We summarize our contributions as follows.

1) An intention-aware model and a probability-based ap-
proach are proposed to deeply exploit and compare
the time-varying motion dynamics of individuals. The
trajectory of each individual is modelled, and individ-
uals are compared according to their intrinsic motion
patterns.

2) A structure-based collectiveness measurement is devel-
oped to characterize collective motions with various
spatial structures. By exploring the propagation of local
similarity, the proposed method is more suitable to reveal
the real crowd condition, and measure individual-/scene-
level collectiveness accurately.

3) A multi-stage clustering strategy is designed to detect
both the local and global consistencies in crowd scenes.
During the multi-stage clustering procedure, our method
can perceive the global message in the scene and get a
whole view of the crowd, which is the weak side of
many traditional algorithms.

Compared to the conference version of this research [16],
this paper is considerably improved by providing more tech-
nical details, more experimental evaluations and applications.
Some related issues are also discussed. The rest of this paper
is organized as follows. Section II reviews the works on
the quantification and detection of collective motion. Section
III introduces the individually time-varying dynamic analysis
approach. Section IV proposes the structure-based collec-
tiveness measurement. Section V describes the multi-stage

collective motion detection method. Section VI presents the
extensive experiments to verify the superiority of the proposed
framework, and Section VII shows its potential applications.
The conclusion and future work follow in Section VIII.

II. RELATED WORK

During the past decade, crowd analysis has captivated many
researchers due to the increasing demands on surveillance
applications. Scientific studies [17], [18], [19] pointed out
that crowds are formed by individuals with similar motion
patterns. Collective motion reveals the underlying principles
of crowd behaviors and gives a mid-level understanding of
crowd phenomenon. Here we briefly review the previous works
toward this topic.

A. Collective Motion Quantification

The quantification of collective motion has been long ig-
nored in computer vision until the collectiveness descriptor
[10] was proposed. Zhou et al. [10] regarded collectiveness as
a bottom feature, and measured it by exploring the relationship
between individuals. They built an adjacent graph for the
individuals according to their spatial locations and motion di-
rections, and then calculate collectiveness by accumulating the
weight along all the paths between individuals. Based on [10],
Ren et al. [20] introduced an exponent generating function to
modify the accumulating operation. However, both Zhou et al.
[10] and Ren et al. [20] rely on a subjective assumption that the
relationship between individuals decreases exponentially with
the path length, which may not be true for real-world crowds.
Wu et al. [21] estimated collectiveness with a density-based
clustering method [22]. Li et al. [23] designed a point selection
strategy to better extract individuals, and utilized the manifold
ranking method to exploit the relationship between individuals.
Due to the difficulty of long-term motion exploration, all the
above methods perform calculation on each frame separately.
So they are limited to capture the time-varying dynamics of
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individuals. Shao et al. [11] used long-term trajectory as study
object. They first detected collective motions by employing the
coherent filtering method [24], and found the anchor trajectory
to calculate the transition priori. According the prior, the fitting
errors of individuals are averaged to compute collectiveness.
This method emphasizes the temporal aspect, but it neglects
the interaction among individuals, so it can not deal with the
crowds with various structures.

B. Collective Motion Detection

According to the type of clues, existing works on collective
motion detection can be roughly classified into two categories:
1) fixed particle-based techniques; 2) feature point-based tech-
niques.

As for the first category, a grid of particles is preliminary
overlaid on the scene, and then collective motions are detected
by analyzing the optical flow of particles. Brox et al. [25]
utilized a nonlinear diffusion method to enhance optical flow,
and then detected collective motion by approximating the flow
distribution. Base on Lyapunov exponent field and Lagrangian
particle dynamics, Ali and Shah [26] proposed a mathematical
framework to segment collective flow in crowd scenes. Wu
and Wong [27] sought the salient optical flow in crowds,
and designed a local-translation domain segmentation model
to partition the flow into collective motions. Yuan et al. [7]
devised a structural context descriptor to character the optical
flow of particles, and detected the collective motion with a
potential energy function. Lin et al. [15] employed the thermal
diffusion theory to process the optical flow of particles, and
then discovered coherent flow by spectral clustering. These
methods need to model the motion dynamic of each particle.
However, there are always thousands of particles in each scene,
which makes the algorithms time-consuming. Moreover, they
fail to deal with the complex motion patterns since the flow
of particles can not profile the crowd motion precisely.

For the second category, feature points in crowd scenes
are extracted to represent individuals, and the detection task
is accomplished by exploring their movements. Zhou et al.
[10] introduced a manifold learning method to measure the
topological relationship of individuals, based on which a
collective merging method was employed to detect coherent
motion. Wu et al. [21] modified the density-based clustering
method [22], and designed a merging strategy to characterize
the behavior consistency in crowds. Li et al. [28] devised a
context descriptor to reveal the structural property of points,
and proposed a multi-view clustering method to fuse the fea-
tures from different aspects. The above three methods neglect
the temporal smoothness, so their performance fluctuate on
different frames. Ge et al. [29] detected collective motions with
a bottom-up hierarchical clustering method, which depends
on the similarity of individuals’ trajectories. Zhou et al. [24]
found the invariant neighbors of each individual, and combined
those with high velocity correlations into the same collective
motion. Shao et al. [11] refined the results of Zhou et al.
[24] by removing the individuals that do not fit the transition
prior. These trajectory-based methods perform relatively better,
however, they neglect the consistency between non-neighbors.

In addition, they just focus on the individuals within a local
region, so the global consistency is ignored.

III. INDIVIDUALLY TIME-VARYING DYNAMIC
ANALYSIS

Individuals with similar destinations tend to walk together,
and their frequent interactions give rise to the emergence
of collective behaviors [17]. Thus, the correlation between
individuals is the key to understanding collective motions.
Choi et al. [30] modelled the interaction between pedestrians
directly, which shows good performance for crowds with
multiple pedestrians. However, for large-scale crowds with
hundreds or thousands of pedestrians, it’s almost infeasible
to extract them accurately. So we employ feature points as
study objects alternatively. In this section, an individually
time-varying dynamic analysis approach is proposed to exploit
and compare the time-series movements of individuals. It
contains three steps: robust individual extraction, intention-
aware hidden state model and probability-based similarity
calculation.

A. Robust Individual Extraction

The extraction of individuals is fundamental for the analysis
of collective motions. Deep learning-based detection [31],
[32], [33] and tracking [34], [35], [36] methods have shown
promising performance in recent years, but for crowd scenes
which may contain thousands of individuals (see Fig. 1 (a)),
these methods are difficult to be performed because manual
labels are extremely expensive and almost impossible. More-
over, it is hard to extract the individuals accurately due to the
variance of perspectives. Therefore, feature points are utilized
in this work as an alternative to represent individuals. This
processing avoids the exhaustedly detection and tracking of
each individual, and is able to profile the crowd dynamic.

Firstly, we detect feature points by using the generalized
Kandae-Lucas-Tomasi (gKLT) [10] detector. It is achieved
by finding the minimum Hessian matrix eigenvalue within a
sliding window and provides stable candidates for tracking.
gKLT is used to detect the points because it finds the points
with a relatively uniform distribution. Secondly, Robust Local
Optical Flow (RLOF) [37] algorithm is used to track feature
points since it is capable of handling the interruption of back-
ground noises [38], [39]. Finally, to tackle tracking drifting, a
forward-backward refinement strategy [40] is utilized, which
uses the resulting position of a feature point as input to the
same tracking method, and discards it if the reverse tracking
does not result in its initial position.

By incorporating these techniques, we can acquire the
feature points’ trajectories and velocities along time-series
with robustness. To maximize clarity, feature points are written
as individuals hereafter. Note that, although optical flow is
used for tracking, but the proposed method does not rely on
dense particles, so its efficiency is guaranteed.

B. Intention-Aware Hidden State Model

Behavior analysis in crowd is challenging due to the time-
varying motions of individuals. According to Mehran et al.
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Fig. 3. Hidden states learned from the observed data. The coordinates of the
points record the first two dimensions of the observed data and the hidden
state without the bias term.

[41], each individual in crowd scenes has its own moving
intention. Intuitively, we believe that the intention drives an
individual’s movement. Therefore, an individual’s intrinsic
motion pattern can be exploited by inferring its moving
intention.

Considering the moving intention as a hidden factor, we
built a Linear Dynamic System (LDS) model [42] for each in-
dividual separately. LDS models the observed data with a hid-
den state variable, which is in accordance with our assumption
that the individual’s movement is considered to be intention-
directed. In addition, time-series dependency is assumed on the
hidden state variables to reveal the continuity of an individual’s
moving intentions. Let ot

i = [xi(t), yi(t), 1]T be the observed
data of individual i at time t, where [xi(t), yi(t)] is the spatial
location and 1 is a bias term. Then the model is defined with
the form of

ht
i = Aih

t−1
i +N (0,Qi),

ot
i = ht

i +N (0,Ri),

h1
i ∼ N (µi,Fi),

(1)

where ht
i ∈ R3×1 is the hidden variable that encodes the

motion dynamic. Ai ∈ R3×3 is a transition matrix that
evolves the hidden variable.N is a three-dimensional Gaussian
distribution, Qi, Ri and Fi ∈ R3×3 are covariances, and
µi ∈ R3×1 is the mean. Denoting Θi = {Ai,Qi,Ri, µi,Fi}
as the set of model parameters, the motion pattern of i can be
captured captured once Θi is learnt. The details about model
inference is given in Section III-D.

C. Probability-Based Similarity Calculation

In this part, the intrinsic dynamic similarity of individuals
is calculated. For this purpose, we first investigate the spatial
relationship of individuals. For each frame, kNN method is
utilized to find the neighbor relationship of individuals. Two
individuals are regarded as neighbors if they keep neighbor
relationship on more than three frames.

Afterwards, the motion similarity of individuals is measured
by comparing their intrinsic intentions. To reduce the compu-

tation complexity, we only calculate the similarities between
neighbors. Non-neighbor interaction will be taken into account
in the next section. According to Eq. (1), the log-likelihood
of the observed data under specific model parameters is

log(p(o1:ni
i |Θi)) =

ni∑
t=1

log(p(ot
i|o1:t−1

i ,Θi)), (2)

where ni is the length of i’s trajectory. The above log-
likelihood can be solved by a modified Kalman smoother
[43], [44], which is suitable to optimize the LDS model [42].
The log-likelihood can be interpreted as the probability of
i’s time-series movements under specific moving intention.
Consequently, for a pair of neighbor individuals i and j,
if i’s observed data o1:ni

i has a high likelihood under j’s
model parameters, they are considered to share similar motion
patterns. So we define the similarity of i and j as

Sij = min[
p(o

1:nj

j |Θi)

p(o1:ni
i |Θj)

,
p(o1:ni

i |Θi)

p(o
1:nj

j |Θj)
], (3)

where min(·) encourages that the individuals have a high
probability to be generated under each other’s model. Through
the above procedures, both spatial and temporal information
are sufficiently incorporated into the similarity calculation, so
our method is able to compare the spatio-temporal movements
of individuals. As shown in Fig. 3, the learned hidden state
reveals the motion dynamic of the observed data steadily, even
for the data with complex shapes, such as Fig. 3 (d)-(f).

D. Model Initialization and Inference

In the proposed intention-aware model, given the observed
data {o1:ni

i }, we would like to find the model parameters
Θi = {Ai,Qi,Ri, µi,Fi} that best fit the data, which can be
achieved by maximizing the log-likelihood of observations,

Θ∗i = arg max
Θi

log p(o1:ni
i ; Θi). (4)

Since a hidden state variable is introduced in the model
to represent the intention, EM algorithm [44], [42] can be
employed to solve Eq. (4). Given the initial values of the
model parameters, EM algorithm iteratively estimates missing
information and updates the current parameters. Each iteration
contains

E − step : (5)

ϑ(Θi, Θ̂i) = E
h

1:ni
i |o1:ni

i ;Θ̂∗
i
[log p(o1:ni

i ,h1:ni
i ; Θi)],

M − step : (6)

Θ̂∗i = arg max
Θi

ϑ(Θi; Θ̂i),

where p(o1:n
i ,h1:n

i ; Θi) is the overall joint distribution of the
observations and hidden states parameterized by Θi, and Θ̂i

is the current estimation of Θi.
Initialization. Before performing EM algorithm, the model

parameters should be initialized. For an individual i, its
Gaussian mean µi is set as [0 0 0]T , the covariance matrices
Qi, Ri and Fi are initialized as [1 0 0; 0 1 0; 0 0 0],
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[0.1 0 0; 0 0.1 0; 0 0 0] and [1 0 0; 0 1 0; 0 0 1]. Note that, in
Qi and Ri, the last element is set as 0 to fix the bias term in
ht
i and ot

i. To initialize the transition matrix Ai, a suboptimal
learning strategy [45] is utilized. Given Rt

i and ot
i, the series of

hidden variables h1:ni
i can be obtained. Intuitively, Ai should

minimize the transition error of h1:ni
i , so we have

A∗i = arg min
Ai

||h2:ni
i −Aih

1:ni−1
i ||22. (7)

So Ai is initialized as h2:ni
i (h1:ni−1

i )T , which is the subopti-
mal solution of problem (7).

Expectation-step. In this stage, the expectation of
p(o1:ni

i ,h1:ni
i ; Θi) is estimated, as in Eq. (5). Given the

current model parameters, according to Eq. (1), the joint
distribution p(o1:ni

i ,h1:ni
i ; Θi) can be denoted as

p(o1:ni
i ,h1:ni

i ; Θi)

=

ni∏
t=1

p(ot
i,h

t
i; Θi)

=p(h1
i ;µi,Fi)

ni∏
t=2

p(ot
i|ht

i; Ri)p(h
t
i|ht−1

i ; Ai,Qi)

=N (h1
i |µi,Fi)

ni∏
t=2

N (ot
i|ht

i,Ri)N (ht
i|Aih

t−1
i ,Qi).

(8)

With modified Kalman smoother [44], we can get the follow-
ing conditional expectations

ĥt
i = Eh1:n

i |o1:n
i

(ht
i),

P̂t,t
i = Eh1:n

i |o1:n
i

[ht
i(h

t
i)

T ],

P̂t,t−1
i = Eh1:n

i |o1:n
i

[ht
i(h

t−1
i )T ],

(9)

then Eq. (5) can be rewritten as

ϑ(Θi, Θ̂i)

=− 1

2

ni∑
t=1

tr(R−1i [ot
i(o

t
i)

T − ot
i(ĥ

t
i)

T
− ĥt

i(o
t
i)

T
+ P̂t,t

i ])

− 1

2

ni∑
t=2

tr(Q−1i [P̂t,t
i − P̂t,t−1

i AT −Ai(P̂
t,t−1
i )

T
])

− 1

2
tr(F−1i [P̂1,1

i − ĥ1
iµ

T
i − µi(ĥ

1
i )T + µiµ

T
i ])

− ni
2

log |Ri| −
ni − 1

2
log |Qi| −

1

2
log |Fi|

− 1

2

ni∑
t=2

tr(Q−1i AiP̂
t−1,t−1
i AT

i ),

(10)

where tr(·) indicates the trace operator.

Maximization-Step. In this stage, new model parameters
Θ∗i = {A∗i ,Q∗i ,R∗i , µ∗i ,F∗i } are obtained by maximizing ϑ.
Differentiating Eq. (10) with respect to each parameter and
setting it to 0, we get the optimal parameters in the current

step,

A∗i =

ni∑
t=2

P̂t,t
i (

n∑
t=2

P̂t−1,t−1
i )−1,

Q∗i =
1

ni − 1
[

n∑
t=2

P̂t,t
i −A∗i (

ni∑
t=2

P̂t,t−1
i )T ],

R∗i =
1

n
[

ni∑
t=1

ot
i(o

t
i)

T −
ni∑
t=1

ot
i(ĥ

t
i)

T
],

F∗i = P̂1,1
i − µ

∗
i (µ∗i )T ,

µ∗i = ĥ1
i .

(11)

E. Discussion

In this section we propose an intention-aware approach
to characterize the connection between individuals. Its major
difference from previous studies is that it has the capability to
compare the individuals’ spatio-temporal behaviors. Existing
works [10], [24], [11], [21], [29] always measure the indi-
viduals’ similarity by computing their instantaneous velocity
correlation on each frame. Thus, these methods fail to give a
holistic insight to the behavior consistency in crowds. In our
method, the time-series observed data is modelled with LDS,
and the similarity is measured with the learnt model parameter.
So the proposed method is naturally appropriate for handling
time-series data.

However, a problem still exists. For individuals without
neighboring relationship, their similarities are set as 0. But
this is not true for real-world occasions. Due to the information
propagation through neighbors, individuals without neighbor
relationship may also keep high consistency [46]. That’s why
a manifold learning method is followed in the next section to
learn the consistency between individuals.

IV. STRUCTURE-BASED COLLECTIVE MOTION
QUANTIFICATION

With the individuals’ similarities, the collectiveness is mea-
sured on both individual- and scene-level in this section.
In the previous step, only the neighbors’ similarities is cal-
culated. However, the far away individuals may also keep
high consistency since local similarity propagates through the
paths between them, especially for the crowds with manifold
structures, as shown in Fig. 1 (a). According to Ballerini et
al. [46], the interaction among individuals depends on their
similarities across paths, which is also termed as topological
relevance in machine learning. So a manifold learning method
is proposed to capture the topological relationship.

A. Methodology

To facilitate explanation, Fig. 4 visualizes a manifold struc-
ture formed by set of moving particles. The green and red
points have different velocities and reside far away. However,
they are connected together by consecutive neighbors, so their
path similarity is high. So we first map the local similarity
to the topological space and then measure collectiveness
according to the individuals’ topological relevance.
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Fig. 4. Illustration of topological relationship. The red and green point show
low similarity on spatial location and moving direction, but they are consistent
from the topologic perspective. Best viewed in color.

Motivated by the observation that similarity propagates
through paths, we put forward an assumption: if two indi-
viduals are similar, their topological relevance to any other
individual should also be similar. By transmitting topological
relationship through similar individuals, the consistency of
faraway individuals can be captured. Supposing the topological
relationship between individual r and i is Zri, then the
optimal topological relevance matrix Z∗ ∈ RN×N is learnt
by minimizing the following function

min
Z

N∑
r=1

[
1

2

N∑
i,j=1

Wij(Zri − Zrj)
2+α

N∑
i=1

(Zri − Iri)2], (12)

where N is the total number of individuals. The weight matrix
W ∈ RN×N is set as (S+ST )/2 to keep the symmetry, where
S is the similarity graph learned by Eq. (3). I ∈ RN×N is the
identity matrix. In Eq. (12), the first term guarantees that Zri

should be close to Zrj if i and j are similar, which implies
the proposed assumption. The second term prevents that all
the elements in Z are equal. The parameter α captures the
trade-off between the two constraints.

From Eq. (12), we can see that problem (12) is independent
between different r, so the problem can be solved for each r
separately:

min
Zr

1

2

N∑
i,j=1

Wij(Zri − Zrj)
2 + α

N∑
i=1

(Zri − Iri)2, (13)

where Zr is the r-th row of Z. Taking the derivative of Eq.
(13) w.r.t. Zr, and setting it to 0, we have

LZT
r + α(ZT

r − Ir) = 0, (14)

where L ∈ RN×N is the Laplacian matrix of W, and Ir is
the r-th row of I. Since (I + L/α) is invertible, the optimal
relevance vector Z∗r is

Z∗r = Ir(I + L/α)−1. (15)

Fortunately, Z∗r is exact the r-th row of matrix (I + L/α)−1,
so the optimal topological relationship matrix Z∗ is

Z∗ = (I + L/α)−1. (16)

With the topological relationship matrix Z∗, we define the
individual-level collectiveness of i as the sum of its relevance
with all the other individuals

φ(i) = [Z∗1]i, (17)

where 1 is the column vector with all elements as 1, and
[·]i means the i-th element of a vector. The scene-level
collectiveness is defined as the mean of all the individual
collectiveness

Φ =
1

N
1TZ∗1. (18)

By exploiting the propagation of local similarity, individ-
uals’ topological relevance is measured reasonably. So our
method is suitable to handle the complex interaction among
individuals, and capable of quantifying crowds with manifold
structures.

B. Discussion

The objective function of our method is of the similar
form with traditional label propagation methods [47], [48].
However, they are different in nature. The label propagation
methods learn either features or labels from the labelled data,
while the proposed method searches a topological relevance
matrix with the weight matrix, which is quite different. In
addition, traditional methods require a set of labelled data,
so they are semi-supervised. Instead, in our objective, all the
elements in the target matrix is unknown, making the proposed
method totally unsupervised. Thus, the proposed manifold
learning method has certain innovation.

V. MULTI-STAGE COLLECTIVE MOTION DETECTION

With all the above quantitative definitions, we can target
on the problem of detecting collective motions in crowd
scenes. The basic idea is based on the topological relationship
between individuals. There exists some works on this topic,
they mainly have two obvious limitations: (1) they are not able
to handle time-varying dynamics of collective motions owing
to the insufficient use of spatio-temporal information; (2)
they neglect the global consistency of individuals’ behaviors.
Motivated by these deficiencies, we introduce a multi-stage
clustering method gradually exploring the local and global
consistency.

A. Local Clustering

The topological relationship is utilized to cluster individuals
in an intuitive way, which finds the locally consistent indi-
viduals by simply thresholding the values on Z∗. Especially,
supposing th1 is the threshold (th1 is 0.5 in our experiments),
if Z∗ij > th1 and Z∗jk > th1, then the three individuals will be
merged into the same sub-cluster even when Z∗ik < th1. Fig.
5 illustrates that the local clustering processing detects local
consistency accurately, but fails to cluster the coherent indi-
viduals within the global scope. So a further global refinement
is devised to process the obtained sub-clusters.

B. Global Clustering

Since the sub-clusters can not capture the global consis-
tency, we propose to merge them according to their spatial
locations and motions. First, the consistency of sub-clusters is
measured.
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(b) Global clustering result

(a) Local clustering result

Fig. 5. Results of local and global clustering. The global clustering combines
the continuous sub-clusters precisely.

Suppose the center position of individual i’s trajectory is pi,
and its average velocity is −→vi . Thus the location and motion
of a sub-cluster c are denoted as

pc =
1

Nc

∑
i∈c

pi

vc =
1

Nc

∑
i∈c

vi,
(19)

where Nc is the total number of individuals within c. Then
the coherency of sub-clusters is measured according to the
following observations. For sub-clusters c1 and c2, if c1 resides
along c2’s motion direction, then c2 is likely to appear on
c1’s position after several frames. So c1 and c2 may exhibit
coherent behavior. Moreover, sub-clusters belonging to the
same collective motion often have close spatial locations and
similar motion directions. Therefore the consistency between
sub-clusters is defined as

Con(c1, c2) =(1 + cos(vc1 + vc2 ,pc1 − pc2))

× (1 + cos(vc1 ,vc2))

× exp(− 2

max(w, h)
||pc1 − pc2 ||22),

(20)

where cos() computes the cosine similarity, w and h are the
width and height of the current frame. The first term complies
with the first observation, and the other two imply the second
observation. Similar to the local clustering stage, two sub-
clusters are considered to be consistent if their consistency is
greater than the threshold th2 (th2 is 0.5 in the experiments).
By merging the consistent sub-clusters iteratively, we can
get the final collective motions. Note that, to remove the
interference of merging order, only the sub-clusters with the
highest consistency are combined in each iteration.

The multi-stage clustering method is able to detect the both
local and global collective motions in crowd scenes. Because
clustering method employs the spatial-temporal topological
relationship of individuals, our collective motion detection
method can achieve stable performance.

C. Discussion

This section arouses the following question. Since both the
proposed manifold learning method and the global clustering
processing pull the far away individuals together into a col-
lective motion, what’s the difference between them? Here we
discuss this confusion. The manifold learning method mainly
deals with the individuals that exhibit different behaviors and
linked by consecutive neighbors. For two far away individuals,
their topological relationship will be low if they are not
connected by neighbors. However, the individuals in the same
collective motion may step into the scene at different times, so
there may be no neighbors between them, as shown in Fig. 5
(a). For those individuals, it’s necessary to introduce the global
clustering step. Thus, the manifold learning method focuses on
the behavior divergence, while the global clustering strategy
handles the individuals with different arriving time. They play
different roles on the detection of collective motion, and both
of them are important for the proposed framework. The whole
procedure is outlined in Algorithm 1.

Algorithm 1 The proposed framework
Input: Input video, parameters k, α, thresholds th1 and th2.
Output: Individual-level collectiveness {φ(i)}, scene-level

collectiveness Φ, clusters of collective motion.

Stage: Individual-based time-varying dynamic analysis
1: Detect and track feature points.
2: for each individual i do
3: Define observed data {ot

i = [xi(t), yi(t), 1]T , t ∈
(1, ni)};

4: Learn model parameters Θi by Eq. (5) and (6).
5: end for
6: Calculate individuals’ similarity matrix S by Eq.3. (Sec-

tion III)

Stage: Structure-based collective motion quantification
7: Compute topological relationship matrix Z with S by

Eq.16.
8: Calculate {φ(i)} with Z by Eq.17.
9: Calculate Φ with Z by Eq.18. (Section IV)

Stage: Multi-stage collective motion detection
10: Merge individuals into sub-clusters by thresholding Z with

th1. (Section V-A)
11: repeat
12: Combine consistent sub-clusters with th2 by Eq.19;
13: until no consistent sub-clusters
14: Get final clusters of collective motions. (Section V-B)

VI. EXPERIMENTS

In this section, the proposed framework is evaluated on
two tasks: collectiveness measurement and collective motion
detection. Throughout the experiments, we make all the com-
petitors use their respective optimal parameters to ensure a fair
comparison.
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(a) Selection of k (b) Selection of α

Fig. 6. (a) The curve of best accuracies with varying parameter k. k is
varied from 10 to 30 with a 5 spacing. (b) The curve of best accuracies with
varying parameter α. α is varied from 0.1 to 1 with a 0.1. It can be seen that
the performance is relatively good with k = 20 and α = 0.8.

A. Parameter Selection

Firstly, experiments are conducted to decide the best config-
uration of parameters k (used in kNN procedure) and α (the
balance parameter). With different k and α, the scene-level
collectiveness is measured on the crowd videos in Collective
Motion Database. According to the obtained collectiveness,
we perform binary video classification of high-low, high-
mid, and mid-low categories (the detailed experimental setting
is introduced in Section VI-B). Then the best classification
accuracy across varying threshold is employed as the criterion
for parameter selection. The parameters are trained on the
first 30 frames in 100 randomly selected videos, and all
the remaining frames are further employed to evaluate the
collectiveness measurement in Section VI-B.

Parameter k influences the performance greatly since it
determines the size of the neighborhood. A small k leads to
the underestimation of collectiveness and makes a collective
motion divided into several parts. Meanwhile, a large k com-
bines the far away individuals together, and brings additional
noises to the final result. Fig. 6 (a) shows the curve of the best
accuracies with varying k, and we can see that the performance
is better with k equal to 20. So k is selected as 20 in this work.

Additionally, the manifold learning parameter α is also
crucial for the overall performance. It directly affects the
calculation of topological relevance, which is the basis of the
collective motion quantification and detection. So it’s essential
to find the best value of α. The corresponding curve is shown
in Fig. 6 (b), accordingly α is chosen as 0.8.

Then the selected value of k and α are used in all the
following experiments.

B. Collectiveness Measurement Evaluation

In order to verify the performance of the proposed collec-
tiveness measurement, we measure the scene-level collective-
ness on real-world crowd videos, and compare its consistency
with labelled human perception.

Dataset. Collective Motion Database is employed here,
which consists of 413 crowd videos captured from 62 different
scenes with various structures. Each video clip contains 100
frames, and is labelled manually as low, medium and high by
10 subjects according to the behavior consistency. By majority

Our MCCCT

0.92 0.88 0.81
0.71 0.60 0.58
0.75 0.58 0.51

precision
recall
F-measure

High-Low

Our MCCCT

0.87 0.79 0.76
0.70 0.55 0.57
0.69 0.52 0.48

recall
F-measure

High-Mid

Our MCCCT

0.83 0.73 0.74
0.72 0.49 0.47
0.65 0.44 0.40

recall
F-measure

Mid-Low

(a)

(b)

(c)

precision

precision

Fig. 7. The left of (a-c) are the averaged performance of classifying high-low,
high-mid, and mid-low collecitveness videos by our method, CT and MCC.
The right of (a-c) are the relative improvements of our method compared with
CT and MCC. The bold face shows the best result.

voting, the videos are partitioned into three categories. In
this work, the collectiveness Φ is measured for each video.
Then we threshold Φ to perform binary classification of high-
low, high-mid and mid-low categories. With all the possible
thresholds, we can obtain a set of classification precisions,
recalls and F-measures [49]. The averaged precision, recall
and F-measure are used as evaluation criteria.

Performance Evaluation. Two state-of-the-art methods are
taken for comparison, they are Collective Transition (CT) [11]
and Measuring Crowd Collectiveness (MCC) [10], are taken
for comparison. The classification results are shown in Fig.
7, and the bar charts visualize the comparative improvements
of our method compared with CT and MCC. The proposed
method achieves the highest averaged precision, recall and
F-measure in all situations, which means that it produces
more accurate collectiveness than CT and MCC. CT learns
a collective transition prior for the crowd motion, and com-
putes collectiveness by accumulating the fitting error of each
individual. So it captures the temporal information. However,
the ignorance of structural property makes it unable to handle
the crowds with complex structures. MCC builds an adjacency
graph for individuals, and leans their topological similarity.
But it measures the collectiveness for each frame separately,
so it can not perceive the time-varying motion dynamic of
individuals. In our method, the above problems are settled
by manifold learning and intention-aware modelling. So it
shows superiority over CT and MCC. Fig. 8 shows some
representative results. The collectiveness score is the sum of
the rating of 10 subjects.
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Fig. 9. Clustering results on the two-moon toy dataset by MCC and the proposed methods. In (a)-(c), different colors indicate different clusters, and green
lines indicate the connection between points. Best viewed in color.

Low

Mid

High

Fig. 8. Representative classified crowds with their ground truth scores (from
0 to 20) and measured scene-level collectiveness Φ (from 0 to 1). Φ keeps
consistency with the ground truth score.

TABLE I
PERFORMANCE COMPARISON OF RMCC AND MCC. BEST RESULTS ARE

IN BOLD FACE.

RMCC MCC
0.84 0.81
0.61 0.58
0.57 0.51

Precision
Recall

F-measure

High-Low
RMCC MCC RMCC MCC
0.81 0.76
0.63 0.57
0.59 0.48

0.72 0.74
0.62 0.47
0.51 0.40

High-Mid Mid-Low

C. Manifold Learning Evaluation

Here we evaluate the proposed manifold learning method
by comparing it with the one in MCC.

First, we replace the manifold learning method in MCC
with ours, and compare the replaced MCC with the orig-
inal one on measuring collectiveness. The comparison of
performance is shown in Table I. Although the precision is
lower in mid-low case, the replaced MCC (named as RMCC)
achieves better performance compared with the original MCC.
Given the adjacent graph, the manifold learning method in
MCC computes the topological similarity of two individuals
by accumulating the weight along all paths between them.
However, the crowd information propagates through neigh-
bors [46], not all the paths. Moreover, it assumes that the
topological relevance decreases exponentially with the length
of path, which seems arbitrary. On the contrary, our manifold
learning method complies with the information propagation
theory by emphasizing the neighbor relationship, and the basic
assumption is reasonable. So it’s more suitable to measure the
topological relationship of individuals.

In addition, experiments are conducted on a toy dataset. In
this test, two clusters of data points are generated in the two-
moon pattern, as shown in Fig. 9 (a), points in each moon form
a cluster. For the points, the affinity matrix W is constructed
with the Gaussian kernel according to the Euclidean distances
of points. According to the affinity matrix, the topological
relationship matrix can be learnt. Then we threshold the
topological matrix and combine the points with high relevance
iteratively, and the final clusters can be obtained. Fig. 9 (d)-
(e) show the clustering performance of the proposed manifold
learning method and the one in MCC. Compared to MCC,
the proposed method achieves higher NMI, Purity and RI
with varying threshold, which indicates the good performance.
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CDC

CF

CT

MCC

Our

Ground
   truth

Fig. 10. Representative results of collective motion detection. Scatters with
different colors indicate different detected collective motions, and the red plus
sign indicates outliers. Our result is closer to the ground truth.

TABLE II
QUANTITATIVE COMPARISON OF COLLECTIVE MOTION DETECTION

METHODS. THE BEST RESULTS ARE IN BOLD FACE.

Our CF
0.60 0.42
0.86 0.73
0.87 0.78

NMI
Purity

RI

CT CDC MCC
0.48 0.39
0.78 0.74
0.83 0.73

0.40
0.85
0.74

Furthermore, we visualize the topological relationship between
points. It can be seen in Fig. 9 (d)-(e) that both MCC and our
method perform best when threshold is 0.1. So we connect the
points with green line if their topological relevance exceeds
0.1. In Fig. 9 (b), some points are not connected into the
corresponding moon, which means that MCC fails to partition
the points into two clusters correctly. On the other hand,
Fig. 9 (c) shows that the proposed manifold learning method
successfully connects the points in each moon, and there is
not any line between different moons, which demonstrates
that all the points are clustered into the correct category.
So the proposed manifold learning method is applicable to
unsupervised clustering task.

D. Collective Motion Detection Evaluation

To demonstrate the effectiveness of the proposed collective
motion detection approach, comparison experiments are con-
ducted on the CUHK Crowd Dataset [11].

CDC

MCC

Our

15-th frame 31-st frame 48-th frame

Fig. 11. Comparison of collective motion detection results along time-series.
Scatters with different colors indicate different detected collective motions,
and the red color indicates outliers.

Dataset. CUHK Crowd Dataset contains 474 crowd video
clips captured from various crowd scenes, and 300 of them are
labelled with the ground truth for collective motion detection.
The ground truth contains the collective motion index of each
individual, and individuals outside of any collective motion
are labelled as outliers.

Performance Evaluation. The proposed method is com-
pared with Coherent Filtering (CF) [24], Collective Transition
(CT) [11], Measuring Crowd Collectiveness (MCC) [10], and
Collective Density Clustering (CDC) [21], which represent the
state-of-the-art. Since collective motion detection is equivalent
to the clustering of individuals, we employ three standard
clustering metrics as measurements: Normalized Mutual infor-
mation (NMI) [50], Purity [51], and Rand Index (RI) [52]. The
quantitative comparison of different methods is shown in Table
II, and some representative detection results are visualized in
Fig. 10. From Table II, we can see that our method achieves the
highest NMI, Purity and RI, which indicates its consistency
with human perception. Both CF and CT find the invariant
surroundings of individuals within a local region, so they can
not detect the global collective motion. As shown in the first
column in Fig. 10, both CF and CT erroneously split the
pedestrians moving in the same direction into sub-clusters.
On the contrary, our method detect global consistency accu-
rately with the multi-stage clustering strategy. MCC discovers
coherent motion with a collective merging method, which
focuses on the neighbors’ relationship and neglects the global
consistency. So it shares the same deficiency with CF and
CT, as shown in the second column in Fig. 10. CDC puts
up a good performance well on detecting global collective
motion, since it also emphasizes the continuous sub-clusters.
However, both CDC and MCC process each frame separately,
and omit the temporal information. So they can not sustain
their performance along time-series. As shown in Fig. 11, CDC
and MCC perform well on the 15th frame, but the performance
decreases on the 31st and 48th frames. Particularly, both of
them fail on the 48th frame due to the tracking noise. The
proposed method maintains good performance on all frames
because of its capability to handle the time-varying dynamics.

In addition, we conduct experiments on collective motion
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Fig. 12. Histogram of the collective motion number difference comparing
with ground truth on the CUHK Crowd Dataset. Our method shows less
deviation.

TABLE III
QUANTITATIVE ON COLLECTIVE MOTION NUMBER ESTIMATION. THE

BEST RESULTS ARE IN BOLD FACE.

Our CF
1.15 2.45
1.32 3.01

AD
CT MCC CDC
1.63 2.02
1.83 2.56

1.59
1.84

number estimation. The estimation accuracy indicates the
capability to detect global collective motion. Fig. 12 shows
the distribution of deviation between the detected number
and ground truth. Compared with others, our method has
less deviation from the ground truth, and its deviation mainly
locates in the range of [0,2]. For quantitative evaluation, we
calculate the Average Difference (AD) and Mean Square Error
(MSE) of each method as follows

AD =
1

Nclips

∑
clip

| Num(clip)−Numgt(clip)|,

MSE =

√√√√√∑
clip

(|Num(clip)−Numgt(clip)| −AD)
2

Nclips
,

(21)

where Num(clip) records the number of detected collective
motions in each video clip, Numgt(clip) is the ground truth,
and Nclips is the number of video clips in the dataset. The
lower AD corresponds to the less deviation from real group
number, and the lower MSE indicates a higher stability of
group detection. Table III denotes the AD and MSE of each
method. The AD and MSE of the proposed method are the
lowest. CDC also obtains relatively good results, due its global
clustering procedure. The performance of CF is unsatisfactory
because it can not distinguish groups with subtle difference.
The proposed method has the ability to capture the global
consistency precisely, so it achieves promising results.

VII. APPLICATIONS

In order to demonstrate the usefulness of the proposed
framework, we show its potential contribution on anomaly

(a)

(b)

Fig. 13. (a) Crowd Scenes with abnormal pedestrians. (b) Anomaly detection
results, green scatters indicate abnormal pedestrians and arrows indicate
moving directions. Our method correctly identifies the abnormal pedestrians
in the crowd scenes.

detection and semantic scene segmentation, which are often
studied in crowd surveillance.

A. Anomaly Detection in Crowd Scenes

The objective of anomaly detection in crowd scenes is to
discover and locate individuals with abnormal behaviors. This
is critically important for security based applications. Whereas,
both the extraction of individuals and the classification of
behaviors are difficult issues. In the proposed method, in-
dividuals are extracted and represented with robust feature
points and then classified into different collective motion
clusters according to their dynamics. Since different feature
points and clusters have distinctive properties, we can use this
information as a criterion to identify the anomalies. To be
specific, we average the individual-level collectiveness within
each cluster, and threshold the obtained value representing
the cluster collectiveness. A low cluster collectiveness value
indicates individuals in the cluster are inconsistent with others,
and they are considered to be abnormal. As visualized in
Fig.13, two pedestrians moves against all the others, which
can be regarded as an abnormal event. Our method extracts
the abnormal pedestrians precisely and classifies them from the
normal pedestrians accurately. Thus, the proposed approach is
helpful to the anomaly detection task.

B. Semantic Scene Segmentation

Our framework can also be utilized to segment semantic
regions in videos containing crowd scenes. Initially, the exam-
ined frame is segmented into patches as Fig. 14 (a) illustrates.
Then collective motions are detected by our method, and each
kind of collective motion is assigned with an index, as shown
in Fig. 14 (b). Thirdly, every patch is encoded by an index
vector recording the types and times of crossing collective
motions.

For instance, suppose there are two kinds of collective
motions. If Motion1 passes through patch i for 3 frames, and
Motion2 for 5 frames, an index vector IVi=[3,5] will be used
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Fig. 14. (a) Segmented patches for the examined frame. (b) Collective
motions detected by our methods. Different colors of lines indicate trajectories
of different collective motions. (c) Semantic regions after merging patches.

to characterize this information. Similarly, if the two motions
pass through patch j for 1 time and 4 times respectively, it
is denoted by IVj = [1,4]. Consequently, we can define the
similarity of patch i and j as

Spatch(i, j) = exp(−||IVi − IVj ||2
Nframes

), (22)

where Nframes means the total number of frames for sup-
porting the segmentation of the examined frame. In this way,
patch i and j will have higher similarity if the collective
motions passing through them are prone to be parts of the
same semantic region. Finally, based on the similarity matrix
Spatch, clustering method can be employed to merge the
patches into semantic regions, as shown in Fig. 14 (c). In our
implementation, we employ SLIC [53] to segment the image
into 500 patches and spectral clustering [54], [55] to merge
patches. Other alternative algorithms are also feasible.

It is worthwhile to mention that collective motion detection
has also some other applications, such as crowd management
and human-robot interaction. For example, Arror et al. [56]
developped a crowd simulation tool to facilate robot naviga-
tion. The proposed framework may be also applicable for these
practical tasks.

VIII. CONCLUSION AND FUTURE WORK

In this work, the quantification and detection of collective
motion is studied. Unlike traditional methods, which neglect
the temporal dependency of crowd behaviors, we propose to
model individuals movements with a hidden-state model, and
compare them with a probability-based similarity calculation
method. With the obtained similarity, a structure-based collec-
tiveness measurement is developed to investigate individuals’
topological relationship, and quantify the behavior consistency
on both individual- and scene-level. Finally, a multi-stage
clustering strategy is presented to detect collective motion
accurately. Through extensive experiments on various real-
world crowd videos, we demonstrate the superiority of the
proposed method over the state-of-the-art competitors. As the
proposed methodology provides a comprehensive understand-
ing of crowds, it may be also applicable in some crowd-

related researches, such as anomaly detection and semantic
scene segmentation.

To further verify the effectiveness, we plan to extend the
proposed method to more practical applications on crowd
surveillance, such as crowd event retrieval, activity recognition
and video abstraction. Meanwhile, because feature points are
too local, it’s also desirable to design more discriminative
feature to capture the contextual information of crowds. In
addition, one limitation of the proposed frameowrk is its
computation complexity, so we also would like to speed up
the algorithm in the future work.
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